

# **ZOOM** with ARC

Supported by: Computing and Engineering 17<sup>th</sup> April 2020












# Introduction to Robotics & ARC

Assoc Prof Marcelo Ang









# Agenda

| Time            | Talk topics                                        | Speaker                |
|-----------------|----------------------------------------------------|------------------------|
| 2pm – 2.15pm    | Introduction to Robotics and ARC                   | Assoc Prof Marcelo Ang |
| 2.15pm - 2.25pm | Autonomous Mobile Robot & Internship Opportunities | Krittin                |
| 2.25pm – 2.35pm | Autonomous Mini-bus and Autonomous Clean           | Shuo                   |
| 2.35pm – 2.45pm | Soft robotics                                      | May                    |
| 2.45pm – 2.55pm | Manipulator (Cobots)                               | Eric                   |
| 2.55pm – 3.00pm | Overview of projects                               | Assoc Prof Marcelo Ang |
| 3.00pm – 3.30pm | Q&A                                                | Moderator: Krittin     |

### **About Us**

#### What is ARC?



Supported by: Computing and Engineering

#### **Our Partners**









- Established in 2013 with FOE and SOC
- Objectives:
  - Lead and support robotics research in NUS.
  - Train new robotics engineers
- 3 Track Focus:
  - Autonomous Mobile Robots/Vehicles
  - Industrial Robots
  - Service Robots



# Our Work 3 Track Focus



Autonomous Mobile Robots / Vehicles



Industrial Robot



Service Robot

#### **Our Work**

Autonomous Vehicle in Action

SPPAM: Safe Path Planning with GP-Regulated Risk Map

> H. Guo, Z. Meng, and D. Rus SMART-FM

### **Our Work**

#### Autonomous Vehicle in Action

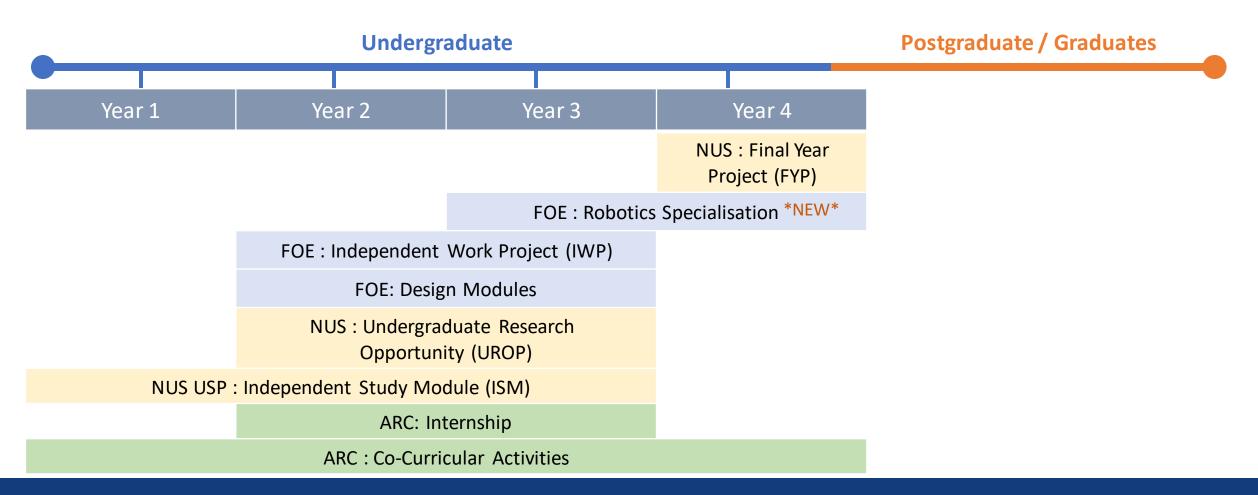


#### **Our Work**

#### Robotics in action



Supported by: Computing and Engineering


v1.9

### Collaborative Intelligent Robotics System Based on KUKA IIWA

Chen Yiwen cywgoog@gmail.com

# **Opportunities with ARC**

For Passionate Robotics Engineers





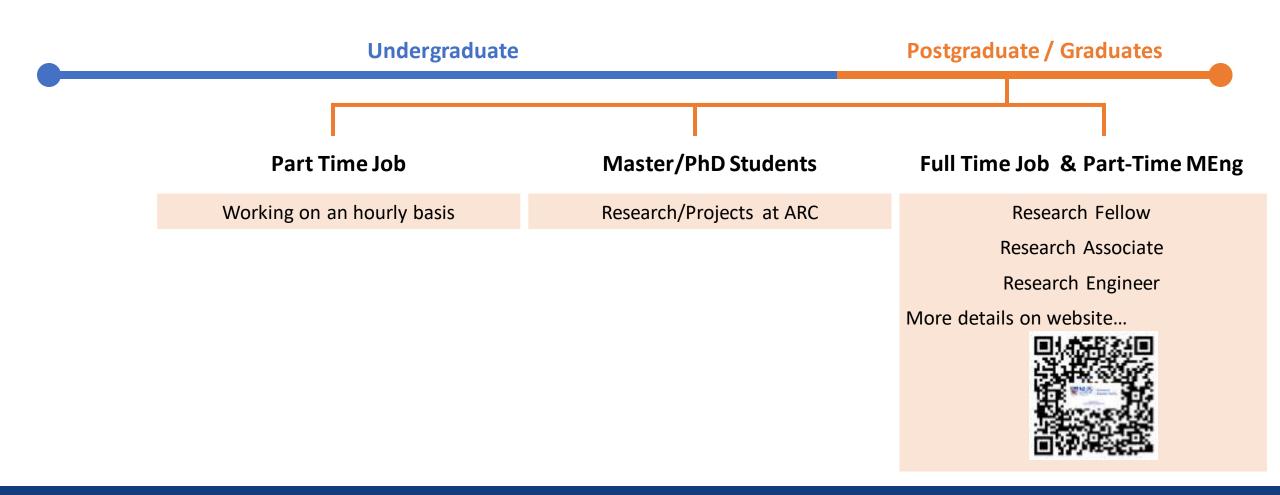
# **Robotics Specialisation (FOE)**

Bachelor of Engineering: Biomedical, Computer, Mechanical, Electrical

**Admission:** in Year 2 Sem II Only

#### **Requirements:**

1. Complete a compulsory module ME3243/EE3305 Robotic System Design (4MC).


- 2. Complete a Final Year Project in the area of Robotics.
- 3. Complete three (3) **elective modules** (12MC) Modules shown below according to suggested tracks

| Track 1: Smart Mechanism Design | Track 2: Robot Intelligence                   | Track 3: Collaborative Systems |
|---------------------------------|-----------------------------------------------|--------------------------------|
| Robot Mechanics and Control     | Autonomous Robot Systems                      | Robot Perception               |
| Intelligent Medical Robotics    | Fuzzy/Neural Systems for intelligent robotics | Human-Robot Interaction        |
| Soft Robotics                   | Robot Perception                              | Soft Robotics                  |
|                                 | Robot Mechanics and Control                   | Robotics in Rehabilitation     |



# **Opportunities with ARC**

For Passionate Robotics Engineers





# **Autonomous Mobile Robot**

Krittin Kawkeeree – Mobility Group Lead





# **About Myself**

Robotics Research Engineer

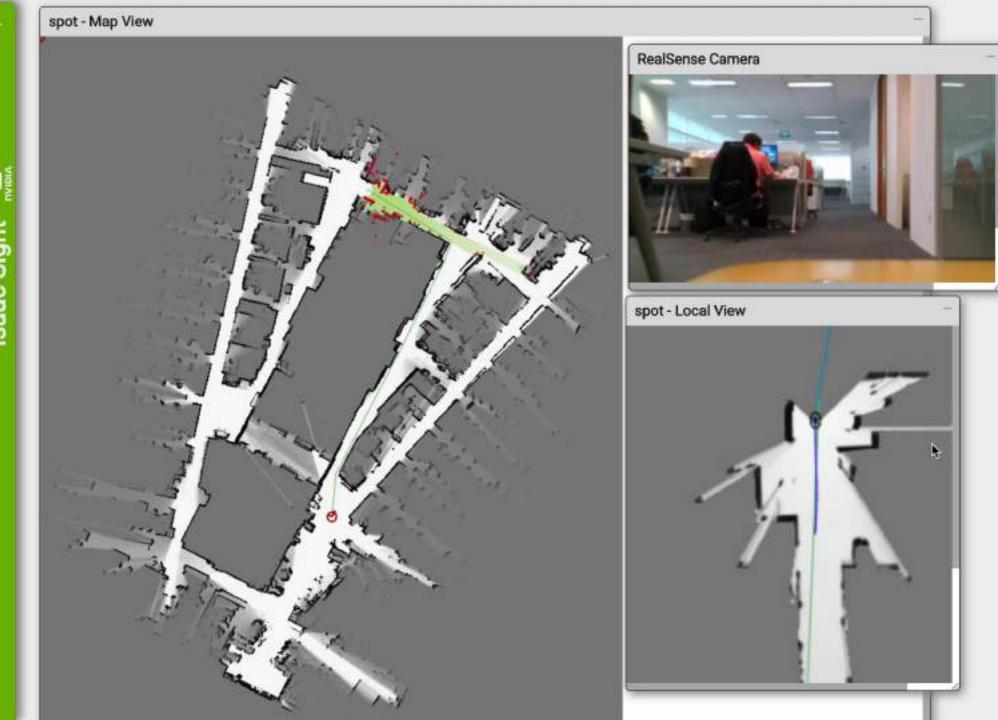


### Krittin Kawkeeree

- NUS Mechanical Engineering Graduate
- Robotics Research Engineer
  - Mobility Team Lead
  - Develop Autonomous Mobile Robot (Both hardware and software)

Email: mpekrk@nus.edu.sg

# **Mobility Group**


Focus on Autonomous Navigation









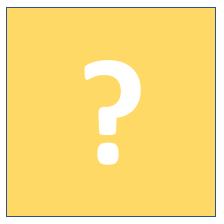


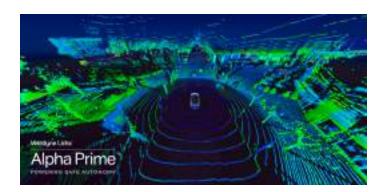


# **Sensors & Equipment**

Hand-ons Experience on Real-Life Equipment



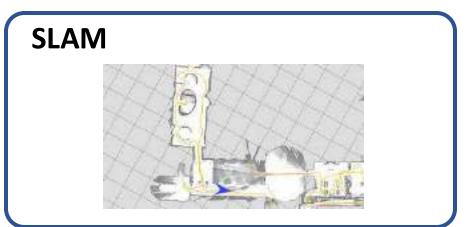


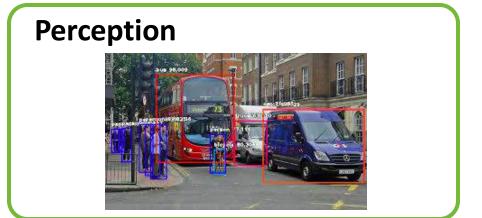


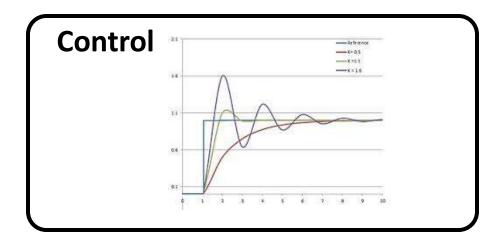








# **Learning Outcomes**

Hands-on Experience on Autonomous Technology Development









# **Previews of FYP and Other Projects on Mobile Robots**

Multi-Disciplinary Projects

Autonomous Wheelchair (Indoor Robot)

Web-Based Control Centre

Object Detection Integration

Free Space Segmentation Integration

Autonomous Legged Robot (Outdoor Robot)

Outdoor Autonomous Navigation

Visual Odometry Integration

GPS/Beacon – Assisted Localisation

Autonomous Tree-Inspection Robot (Outdoor Robot)

Light-Weight Robotics Arm Design

 For more information on FYP topics and other related projects, please contact mpekrk@nus.edu.sg

#### **Learning Outcomes:**

C++, ROS, Python, Sensors & Hardware



## **Internship Opportunity**

@ ARC & GovTech - AY2021 Sem I IA Intake (Tentative)



#### Scope:

- Low-cost Autonomous Robot Development
- Location-based Services
- IoT Development

Mechanical Engineering (x1)

Electrical Engineering (x2)

Computer Engineering/ Computer Science (x2)

#### Scope:

 Autonomous Legged Robot Development

Mechanical Engineering (x2)

Electrical Engineering (x1)

Computer Engineering/ Computer Science (x2)

Look out for job posting on ARC website:

https://arc.nus.edu.sg/





# Autonomous Mini-bus Autonomous Clean

SUN Shuo



### **Autonomous Mini-bus**

#### In collaboration with TURING



• 2020 July – 2023 April

### Objectives:

- Research on Autonomous Technology
- Teaching Platform: Train new robotics engineers
- Service Trials on NUS campus

### **Autonomous Clean**

In collaboration with Karcher

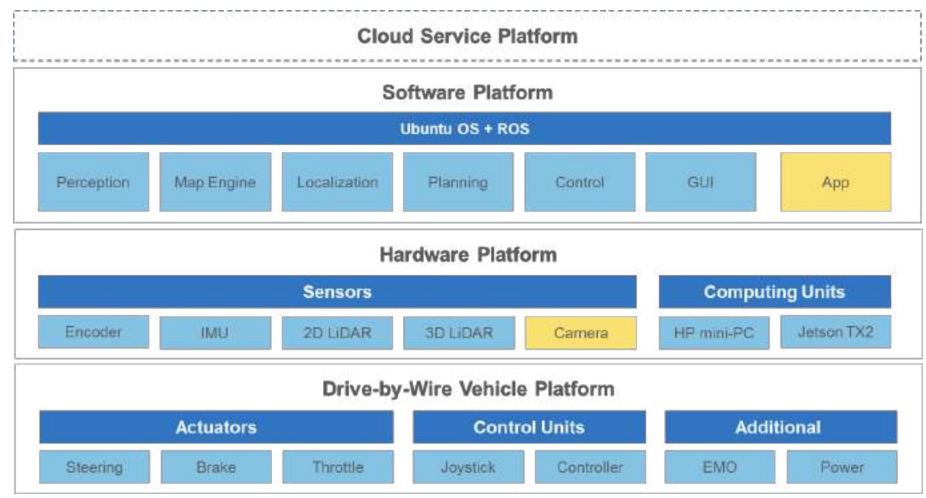


- 2020 July 2023 April
- Objectives:
  - Develop an Autonomous Outdooring Sweeping Robot
  - Conduct Trials @ UTown

### **Previous Projects**



Autonomous Bus with ST Engineering




Autonomous Buggies @ Micron (DPM and the Micron CEO sitting on our buggy)





A Quick Introduction



# **FYP & Other Projects Available**

| No. | Project     | Title                                                                                                            |
|-----|-------------|------------------------------------------------------------------------------------------------------------------|
| 1   | AV Mini-bus | Simulation of vehicle systems for the self-driving mini-bus development and testing                              |
| 2   | AV Mini-bus | Simulation of sensor models and realistic environments for the self-<br>driving mini-bus development and testing |
| 3   | AV Mini-bus | Mechanical design and fabrication of self-driving mini-bus                                                       |
| 4   | AV Mini-bus | Firmware design and electrical architecture design of self-driving minibus                                       |
| 5   | AV Mini-bus | Sensor configuration and integration for self-driving mini-bus                                                   |
| 6   | AV Mini-bus | Non-homogenous sensor suite fusion for object detection for self-<br>driving mini-bus                            |



| No. | Project                                         | Title                                                                                  |
|-----|-------------------------------------------------|----------------------------------------------------------------------------------------|
| 7   | AV Mini-bus                                     | Vision based multi-camera object detection for self-driving mini-bus                   |
| 8   | AV Mini-bus /<br>AV Road Sweeper                | Global path planning and optimisation for self-driving mini-bus and Autonomous Clean   |
| 9   | AV Mini-bus /<br>AV Road Sweeper                | Path tracking and Local path planning and optimisation for self-driving mini-bus       |
| 10  | AV Mini-bus /<br>AV Road Sweeper/ AV Wheelchair | 3D Mapping and localisation for self-driving mini-bus, Autonomous Clean and wheelchair |
| 11  | AV Road Sweeper                                 | Autonomous platform DBW hardware                                                       |
| 12  | AV Road Sweeper                                 | Autonomous platform DBW electronics                                                    |
| 13  | AV Road Sweeper                                 | Autonomous platform DBW ROS stack                                                      |



A Quick Introduction – Hardware



- Design the Drive-by-Wire System
  - Steering, Throttle and Brake
  - Power System
  - Electrical Circuits
- Installation of Sensors
  - Sensor Coverage & Layout
  - Sensor Mounting & Aesthetics
- Functional Safety
- Human-Machine Interface



A Quick Introduction - Hardware









### What you will learn:

- Sensors and Actuators
- Vehicle Engineering
- CAD/CAM
- Robotics & Programming

### **Gain Rich Experience in:**

- Electro-mechanical Systems
- Hands-on Fabrication & Prototyping

A Quick Introduction - Software

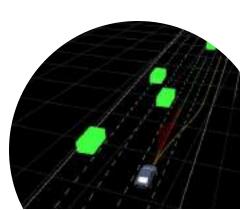


Perception

Decision-

making

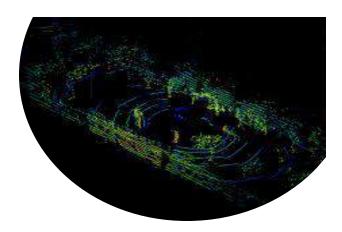
Making appropriate


driving decisions in

dynamic scenarios

Fusing various sensors to detect and track obstacles










**SLAM** 

Simultaneous Localization and Mapping





Motion Control

Controlling the the vehicle to execute the path precisely





A Quick Introduction - Software



















#### What you will learn:

- C++, Python,
- Git, CMake, Linux
- Robot Operating Middleware
- Deep Learning

#### **Gain Rich Experience in:**

- Software Development
- Computer Vision, SLAM, Planning, Control Algorithms



# **Autonomous Vehicles Projects**

What you will learn

State-of-the-Art Robotics knowledge, widely applicable in many industries

Solving complex system-engineering problems

Hands-on experience with real-world applications



# **Autonomous Vehicles Projects**

Other ways to join us

- Undergraduate Research Opportunities Programme (UROP)
- Independent Study Modules (ie. ME3000)
- Design Projects
- Industrial Attachment
- Student Helpers @ ARC





# Advanced Robotics Centre Soft Robotics

Supported by: Computing and Engineering

Assoc. Prof. Raye Yeow
Presented by: Khin P. May



# SOFT ROBOTICS

Making robots with soft materials



### Collaborative robots


- Soft compliant grasping solutions
- Industrial applications, i.e. food packaging, consumer goods packaging
- Assistive robots

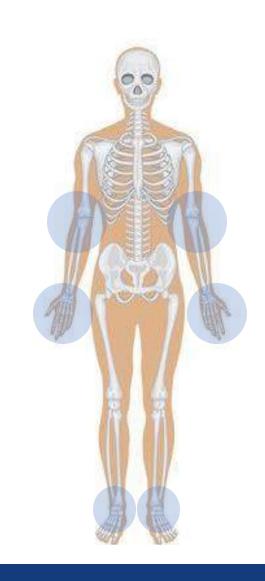
### Healthcare robots

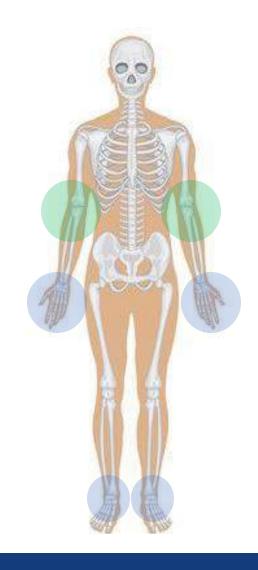
- Rehabilitation devices
- Patients with conditions such as stroke
- Clinical trials

### **Collaborative Robots**

#### Three-fingered grasping solution\*




\*In collaboration with NTU

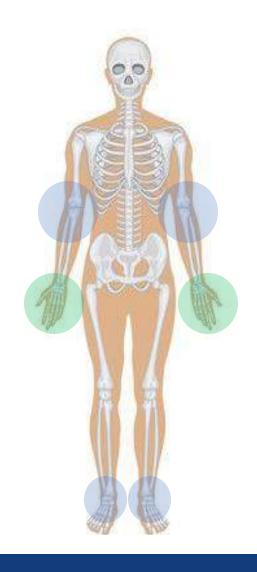

#### **Learning Outcomes**

Mechanical design/3D design Fast prototyping techniques Control system Programming knowledge

#### **Learning Outcomes**

Knowledge of biomechanics
Mechanical design/3D design
Fast prototyping techniques
Control system
Programming knowledge



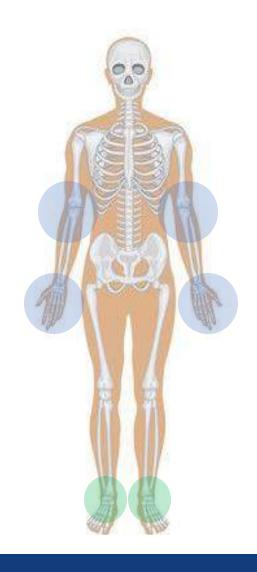



Upper Limb Assistive Device

#### Soft Torque-generating Actuation System (STAS)

- Antagonistic soft pneumatic actuators for bidirectional torque generation
- Elbow flexion assistance






#### Upper Limb Assistive Device

#### Soft fabric-based glove

- Stroke patients
- Enable finger flexion and extension
- Clinical trials





#### Lower Limb Rehabilitation Device

#### Soft fabric-based sock

- Dorsiflexion and plantar flexion
- Deep vein thrombosis
- Clinical trials



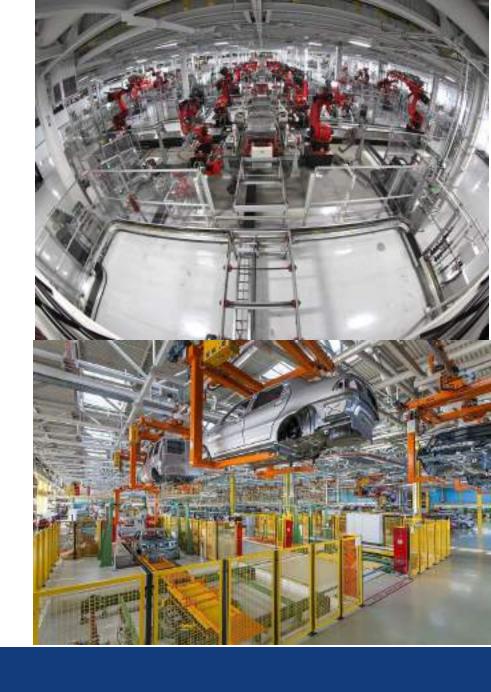


Supported by: Computing and Engineering

# **Collaborative-Al**

Presenter: Eric Kwok (Research Engineer)

## What we do


- Research and develop software interface and libraries to incorporate Al
  - Skills learning
  - Object and voice detection
  - Commonsense understanding
- Develop basic skills and actions for the robotic arm or mobile platform → Mobile manipulation
  - Reusable by different tasks
  - Reusable by different robots





# Why we do

- Traditional Manipulators:
  - Low-mixed high-volume production
  - Low adaptability
  - Routine and repeatable tasks
  - Caged. Not suitable to work alongside human beings due to safety reasons



# Why we do

- Growing trend:
  - Increased investment in High-mixed Lowvolume production in SG (Straits Times Jul 2019)
  - Aging population in many of the developed countries
  - Reduced in supply of local workers and high labor cost
  - Demand for robot that is adaptable to human-centric environment



## What we aim to do

- Robots that can work alongside human without compromising safety
- Communicate with human and understand the environment
- Work on complex tasks and adapt to various changes
- Allow human to perform higher level tasks



# What we can offer you

#### Projects

- Development of mobile manipulators
  - Navigation skills
  - Robotic arms manipulations
  - Sensor fusion
- <u>Development of UI/middleware to program industrial robots</u>
  - Human centric UI development
  - Understanding of Robot Operating System (ROS)
- Advanced visual object trackers for vision-guided grasping tasks
  - Signal processing
  - Visual tracking
  - Machine learning

















# What we can offer you



Kuka liwa manipulator



Kinova Movo mobile robot

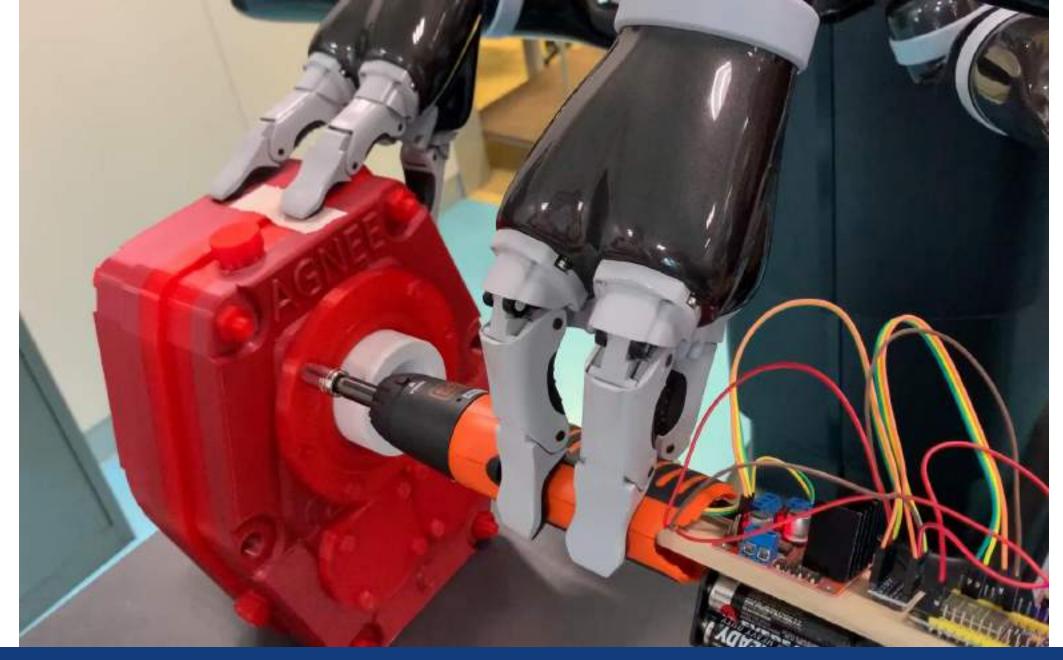


Haptic device



RGBD camera






Supported by: Computing and Engineering

v1.9

## Collaborative Intelligent Robotics System Based on KUKA IIWA

Chen Yiwen cywgoog@gmail.com



# **Overview of Projects**

Assoc Prof Marcelo Ang









# **Overview of Projects**

| Autonomous Vehicles/Robots                                              | Industrial Robot                           | Service Robot                               |
|-------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Mechanical Design for Fabrication                                       | Mobile Manipulator                         | Bio-inspired locomotion                     |
| Electrical Hardware (Architecture Design , Configuration & Integration) | Object detection & tracking for grasping   | Bio-inspired end-effectors for manipulation |
| Object Detection (Vision Based)                                         | UI/middleware to program industrial robots | Bio-inspired robot for flight               |
| Path Planning                                                           |                                            |                                             |
| ROS Related: Control Optimisation,<br>Multiple Robot Operations         |                                            |                                             |
| Sensor Fusion                                                           |                                            |                                             |
| Simulation of autonomous vehicle                                        |                                            |                                             |



## Q&A

#### Ask Your Questions Live!

- Slido platform
  - Scan QR code

#### OR

• Full url: <a href="https://app.sli.do/event/okmqgy97/live/questions">https://app.sli.do/event/okmqgy97/live/questions</a>

#### OR

- Using the Slido app or at <a href="https://www.sli.do/">https://www.sli.do/</a>
  - Event id: **75035**
- Zoom chat
- General follow-up: <u>robotics@nus.edu.sg</u>



# Follow up emails

- General enquiries:
  - robotics@nus.edu.sg
- Mobile Robots:
  - mpekrk@nus.edu.sg
- Autonomous Vehicles:
  - shuo.sun@u.nus.edu

- Manipulator/Cobots:
  - mpeknt@nus.edu.sg
  - mpelix@nus.edu.sg
- Soft robotics:
  - biekpm@nus.edu.sg